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This paper presents calculations of the intensities diffracted from polycrystalline specimens of 
body-centred cubic crystals containing stacking faults on (211) planes. Possible applications of the 
theory to the anomalous line broadening from martensite and from cold-worked iron are discussed. 

Introduction 

The possibility of errors in the stacking of the (l l2) 
planes in b.-c.c, metals has received only cursory at- 
tention (Barrett, 1949; Cottrell & Bilby, 1951 ; Cottrell, 
1953; Frank & Nicholas, 1953; Suzuki, 1954), mainly 
because direct experimental evidence of their existence 
is lacking. The importance of stacking errors (or faults) 
in f.-c.c, structures, however, is well established and 
studies have been made of faulting induced by defor- 
mation (Warren & Warekois, 1955; Barrett, 1952; 
Hirsch, Kelly & Menter, 1955) as well as during phase 
transformations (Barrett, 1950, 1952). Faults in b.-c.c. 
structures may be more difficult to detect and to 
identify because their occurrence may be less frequent, 
since the energy involved in the formation of a b.-c.c. 
twin is much greater than in those f.-c.c, metals 
which twin and fault easily (Cahn, 1954). 

The importance of faulting in the cold working of 
b.-c.c, metals has not been established, but in view 
of a recent theory (Wechsler, Lieberman & Read, 
1953) of the crystallographic aspects of the martensite 
transformation it seems worth while to consider 
whether faulting could be a possible contributing 
factor to the exceptional broadening of Debye- 
Scherrer rings from martensite in steels (Wheeler & 
Jaswon, 1947; Smith, 1953). According to this theory, 
the martensite plate could be either a single crystal in 
which approximately every sixth (112) plane has 
slipped one interatomic distance in the [111] direction, 
or a twinned crystal in which the ratio of the thickness 
of the twin lamellae is approximately 2:1, and in 
which the twinning plane is (112). In either case the 
calculation yields the same result for the habit plane 
and orientation relationship between the austenite and 
the martensite. Consequently, the martensite could, 
according to the theory, contain an arbitrary amount 
of twins without in essence affecting the results of the 
theory. Such twins, if only one atomic layer thick, 
would, in fact, be stacking faults. Further, if the 
transformation proceeds by the movement of partial 
dislocations with Burgers vectors [111J/6 lying in 

(112) planes (Cottrell, 1953), such twins and stacking 
faults would be expected to occur. In the diffusion- 
less ('martensitic') phase transformations of Co 
(f.-c.c. ~ h.c.p.) (Edwards & Lipson, 1942), Li and 
Na(b.-c.c.-~h.c.p. or f.-c.c.) (Barrett, 1950, 1956), 
for example, the product phase is faulted. 

Stacking faults may also possibly be of importance 
in the deformation of b.-c.c, crystals; thus it is known 
that twins can be produced by deformation in Fe 
(Kelly, 1953; Paxton, 1953). The broadening of the 
X-ray lines from Fe filings (Smallman, 1953) shows 
certain anomalies similar to those found for marten- 
site. The purpose of the present paper is to examinc 
the X-ray diffraction effects from faults in b.-c.e. 
structures and to discuss a possible interpretation of 
the results on line broadening from martensite and iron. 

The nature of stacking faults in b.-c.c crystals 

In the f.-c.c, case two types of fault may be distin- 
guished: (i) A growth fault, which forms the boundary 
between two twins, e.g. 

. . . A B C A B A C B A C B A  . . . .  

(ii) A deformation fault in which the packing sequence 
is always the same except at a fault plane: 

. . . A B C A B A B C A B C  . . . .  

This is actually equivalent to two adjacent growth 
faults. The fault occurs on a (111) plane, which is the 
twinning plane and also the mos.t densely packed plane. 
In the b.-c.c, case, the twinning plane is (112) and is 
the only plane on which faulting could occur, even 
though (110) is the most densely packed plane (Bar- 
rett, 1949). 

The stacking sequence of (112) planes in b.-c.c. 
crystals may be described as 

. . .  A1A ~B1B2C1C 2A 1A ~B1B 2 . . . .  

Successive layers are displaced relative to each other 
by a vector with components [111]/6 and [110]/2 
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shows the  e f fec t  o f  an  Fig. 1. Projec t ion  of the b.-c.c, s t ruc ture  on a {112} and  a {110} plane;  the la t te r  project ion 
error in the  s tacking sequence of the (112) planes. 

along the [ l l i ]  and [110] axes respectively (Fig. 1). 
A sequence of six layers defines the stacking arrange- 
ment completely. A fault occurs when, for example, 
B 2, instead of being followed by C 1, is followed by 
B 1 again. The displacement of B 1 relative to B 2 has 
components -[111]/3 and [110] along the axes, and 
since displacements [1i0] cannot be distinguished 
inside the crystal the fault is effectively produced by 
a displacement - [11i ] /3 ,  which is also equivalent to 
a displacement [111]/6, in the [liT] direction (Fig. l). 
Faults are therefore produced by wrong displacements 
in the [111] directions only. 

A growth fault in b.-c.c, crystals can occur in the 
same way as in f.-e.c.* crystals; it gives rise to the 
sequence 

• . .  B1B2C1C2A xA ~B1B2B_IA 2A 1C2CzB2... 

and produces a twin orientation. 
A deformation fault is produced analogously thus" 

• . .  BzB2C1C2A xA 2B1B~B_IBgC1C~A 1A~B1. . . 

and is illustrated in Fig. 1. This fault preserves neither 
nearest-neighbour distances nor the correct bond angles 
(though the distances between neighbouring planes 
are preserved). I t  is therefore difficult to consider this 

* I t  should be noted  t h a t  the defini t ion is no t  exac t ly  the 
same as in the f.-c.c, case, since a complete sequence consists 
of 6 layers instead of only 3. 

kind of fault as a twin of minimum thickness and thus 
the analogy with the f.-c.c, case breaks down here. 
However, if a fault occurs at every layer the twin 
orientation is produced. 

Effect of s tacking  faults on X-ray  ref lexions 

In the b.-c.c, ease stacking faults are produced by 
~xong components of displacement in the [111] direc- 
tions. In the unfaulted crystal successive (112) planes 
are displaced relative to each other by a veetor with 
a component [111]/6 in the [liT] direction. Since 
each layer has equivalent atomic positions at  0 and 
[111]/2, a sequence of only three layers (with posi- 
tions at 0, [111]/6, [11i]/3) is needed to describe the 
pat tern of displacements along the [ l l i ]  direction 
completely (see Fig. 1). Therefore, if only the position 
of the layers along the [lli] axis is considered, the 
sequence can be described simply as 

A B C A B C . . .  etc., 

i.e. as a sequence of three layers rather than as a 
sequence of six layers necessary when the position of 
the layers along the [110] direction is also taken into 
account. The calculation for the probability of finding 
a layer in any of the three positions along the [111] 
axis reduces therefore to that  relevant to the f.-c.c. 
case (Paterson, 1952; Warren & Warekois, 1955), and 
the results obtained for the latter case can be adapted 
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easily for b.-c.c, structures. The calculations have 
been carried out for random distributions of deforma- 
tion faults and of growth faults. I t  should be noted 
that  if the martensite transformation takes place by 
the movement of partial dislocations (Cottrell, 1953) 
the resulting distributions of faults may not conform 
to either of these random distributions. Thus, if the 
partial dislocations merely separate, deformation faults 
are produced; if they rotate about single dislocations 
with screw components [112]/6, twins are produced 
whose thickness depends on the number of revolutions; 
rotation about several dislocations with screw com- 
ponents [112]/6 would result in the formation of 
more complex arrangements of faults. Thus the final. 
martensite plate might be expected to contain both 
deformation and growth faults. 

(1) Transformation of axes 

For the calculation of X-ray intensities it is con- 
venient to choose orthorhombic coordinates as follows. 
Let A~, A~, A s be the b.-c.c, axes and hkl the cor- 
responding indices. In terms of one set of (112) planes, 
introduce a new set of orthogonal axes a~, a~, a a with 
a~, ae in the (112) plane and a a normal to it. Let 
H K L  be the new indices. The axes chosen are 

[111] ]l a~, a~ -- ½V'aA~; 
[110] [[ a~., a~ = ]/2Ae; A~ -- A~ -- A a = A; 
[112] [[ aa, a a = f6Aa; 

where a~, A~ etc. are written for the moduli of the 
vectors. Then 

1 a~ = ~zA~ + ½A~-  ½A3, 
a ~ =  A ~ -  A e + 0 ,  
a ~ =  A ~ +  A e + 2 A a ,  

and 
H = k h + ½ ~ - k t ,  
K = h - k ,  
L = h + k + 2 l .  

Table 1 gives the orthorhombic indices correspond- 
ing to the first six b.-c.c, powder pat tern lines. 

(2) Calculation of X-ray  intensities 

Consider a crystal consisting of M identical planes 
parallel to (112) planes stacked parallel to each other 
at a distance aa/6 and displaced parallel to each other 
as necessitated by the structure and by the distribu- 
tion of faults present. 

The Fourier transform T of the crystal is 

T = ~ "  exp [2~i ((~,a~ s~ + ( -  1)~(aJ4) s~ + (naa/6) sa) ] 

(1) 
where q~ = transform of one layer, 
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The term ( -1) ' (a2/4)s  2 takes into account the dis- 
placement in the b.-c.c, structure of successive layers 
along a~. 

If the diameter of the layers is large, ~ has sharp 
maxima at s 1 = Ha*, s 2 = Ka*,  where H, K are in- 
tegers, and the transform consists of rods in reciprocal 
space along aa, passing through (H, K). 

Writing s 8 = ~a*, 

T = q~Zexp [ 2 7 d ( ~ , H + ( - 1 ) " K / 4 + n ~ / 6 ) ] .  (2) 
n 

The intensity, therefore, is 

I(~) = [~[~ ~ exp [27ei{(~,,-6,,)H 
n m 

+ ( ( - 1 ) ' - ( - 1 ) ' n ) K / 4 + ( n - m ) ~ / 6 } ] .  (3) 

Putt ing n' = n - m ,  and summing over n for a given n', 
+(M--l) 

I(~)----[q0]2 2~' ( -1)K" ' (M-[n ' I )  
n'=--(M--1) 

(exp [2z i~ ,H] )  exp [2~in'¢/6], (4) 

where 3~, = (5,-~,n and (exp [2~iS,,,H]) is the aver- 
age value of exp [2~iS~,H] over all n. Since the layers 
can take up three possible positions along a~, we write 

(exp [2~i(~,H]) 

--- An,+Bn, exp [2~iH/3] +C,,. exp [ - 2 ~ i H / 3 ]  , (5) 

where A.,, B~,, C~,, are the probabilities of the n ' th  
layers being at the A, B, C positions relative to the 
first layer. These probabilities are the same as for the 
f.-c.c, case, as calculated by Paterson (1952) and 
Wilson (19a9) and others. 

(3) Deformation faults  

Aw 1+ 2 n" "" 1 ---- 3 5 ( - 1 )  . [ 1 - 3 o ~ ( 1 - o 0 ] - ~ . c o s  n'O, 

B,, - l - ~ ( - 1 ) ' . [ 1 - 3 ~ ( 1 - ~ ) ] - ~ . c o s ( n ' 0 + l ~ ) ,  (6) 

C,, = ~-~( -1 ) '~ ' . [ l_3~( l_c~) ] .~ .cos (n ,0_~n)  , 

where ~ = stacking fault probability and tan 0= 
J/3(1-2~). I t  follows from equations (4), (5) and (6) 
that  for H --- 3N± 1, where N is an integer, 

[" M - - I  n '  

I(~) = Iq0] 2 I M + 2  ~" ( M - n ' ) [ 1 - 3 ~ ( 1 - a ) ] - i  
1 

x cos 2~n'  + --2-- + , (7) 

the positive and negative signs applying when H = 
3N + 1 and 3 N -  1 respectively. 

For H = 3N, 

s 1, s 2, s a are components of a reciprocal-lattice vec- 
tor along al*, a2*, a~ * reciprocal-lattice axes, de- 
fined in the usual way, 

3, = displacement of nth layer along a v 

I(~) -~ ] g l e ~ M + 2 ~ , ( M _ n , ) c o s 2 z e n  , + . (8) 
1 

Thus, reflexions with H = 3N are unaffected by the 
faulting, and those with H = 3N+I  are broadened 
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into streaks along a*, exactly as in the f.-c.c, case. 
The peaks of these reflexions occur at $ = 6N'::F30/g 
- 3 ( K + l )  and are therefore displaced from the cor- hkl 
responding positions in an unfaulted crystal by ll0 

3[/3 10$ 
d~ = ± (1-30/~)  _~ ± ~ ~ (when ~ small) 017 

li0 
101 

for H = 3N± 1. In principle, therefore, the probabili ty Oil 
of deformation faulting could be determined from the 
displacements of the lines, as in the f.-c.c, case~f. The 200 122 

020 122 
Fourier coefficients of the diffraction lines due to 002 Y04 
particle size and stacking faults are identical with 
those due to deformation faults in f.-c.c, structures, 
and methods similar to those used by Warren & 
Warekois (1955) could, at least in principle, be used 
to analyse the diffraction patterns in terms of strains, 
faults and particle size. 

(4) Line broadening 
The integral breadth is given by 

total intensity in line, It 

peak intensity, I v 

On the $ scale It(~) = 6MC and 

Ip (~) -- .M~C for h = 3 N ,  

I p ( ~ ) = [ M + ~ I _ r ~ { r M - r M + M - ' } ] C  

for h = 3 N + l ,  and c~4=0 or 1 

(l+r) 
_~ M,-;--~_, C for large M, 

( l - r )  
where 

r = [1-3a(1-v¢)]½, and C = I [ ~ g 1 2 d s l d 8 9  " 

If a is small, 
4M 9 

Ip(~) = - ~ C  and fie = ~cx. 

(9a) 

(9b) 

(10) 

On the s scale ( s = 2 s i n 0 / ~ ,  0 = B r a g g  angle, 
A = wavelength), 

8 
It(s) = 6 i a * C ,  Ip(s ) = -~a Ip($) 

and therefore 

fie = 6ia*a C / ~  Iv($) . ( l l )  

In  powder photographs from randomly orientated 
crystals, several reflexions contribute to the same line; 
the resultant broadening is equal to the total  intensity 

Jf However, as Prof. Warren pointed out (private com- 
munication), the average displacement of a line consisting of 
several different components, as calculated in a manner 
similar to that used for a-brass, turns out to be zero. This 
result is due to O. Guentert, whose work will be published 
shortly. 

Table 1. Corresponding b.-c.c. (hkl) and orthorhombic 
(HKL) indices 

HKL hkl HKL 
102 } 220 204 } 
l l l  B* 203 222 
11--1 022 222 
020} 220 040} 
013 S* 202 026 
oT3 022 026 

112 202 
21I 211 
127 271 
27i ]3Y 
1~1 Y31 
211 115 
121 1i5 
172 724 

ll2 006 
271 033 

310 224 
B 130 224 

370 142 
130 142 
103 i_17 
0 1 3  117 
013 215 
103 215 

B 301 135 
03! 135 
307 231 
o3i 2~1 

222 108 } 
S 222 144 B 

222 144 
222 300 } S 

* B: broad; S: sharp. 

divided by the peak of the compound lines. In Table 1 
the reflexions are arranged in 'broadened' and 'un- 
broadened' groups. I t  is clear tha t  some of the re- 
flexions, e.g. 200 and 310, should be exceptionally 
broad if stacking-fault broadening is important.  In  
order to calculate the resultant broadening of each line 
we proceed as follows. For small a the breadths of the 
components are always greater than their displace- 
ments, for 

fie 9c~/2 
- V3~ -- 5.44. (12) 

d~ 3V3~/2~ 

I t  seems reasonable, therefore, to neglect the peak 
shifts to a first approximation. Then the broadening is 
given by 

fie = ~ 6MC/sa~ .~ Ip(~) ' 

the sum being taken over all component lines. This 
expression is unsatisfactory for reflexions with ~ = 0; 
for these the broadening due to the finite diameter of 
the layers, i.e. of the crystal, must  be taken into ac- 
count. These lateral dimensions of the crystals should 
also be considered for all the other reflexions which 
are not affected by the faulting. In order to arrive 
at a simple and consistent method of allowing for the 
finite size of the crystals for these reflexions, it will 
be assumed that  the crystals are spherical, of radius R, 
and that  the volume of the sphere is equal to the 
volume of the cylindrical crystal considered for the 
broadened reflexions. Further ,  it will be assumed tha t  
the latter cylindrical crystals have a diameter Ma3/6 
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Table 2. Average integral breadths of powder lines from crystals containing deformation faults 
N u m e r i c a l  e s t i m a t e s  o f  fls f o r  

r 
hk l  fls a M  = 10 a M  = 100 a M  >~ 1 

16 1 110 [_~ ~2+ (~)~- aM]-'~ ~ 0.394 ~ 0.0546 ~ (~)~ V6 MA 

- -  0 " 9 - -  0 " 9 - -  0 - 9  - -  200  0.9 A A A A 

V 6 M A  

16 1 220 [5.  + (~) ~ ~6 aM]-' ~ ~  0"394 ~ 0.0546~ (-~) ~ .  MA 

a a 0-62 a 0 .62 a 310 0.62~ 0.62~ ~ 

[~ (i)~ 0 ] ~  o0~0~ 0,0~ ( ~ ~  222 V3+ ~-~ aM -~ ~-3/ V6 MA 

equal to their length. Equating the volumes of the 
two types of crystal assumed, gives 

4 ~ (Maa~ a 
3 z R 3 = i \  6 ] ' 

and hence 

R =  12 

As before, the total  intensity on the s scale for a 
reflexion from the spherical crystal is It(s) = 6Ma*C; 
whence, using the result derived by Wilson (1949) for 
the broadening due to small spherical crystals, we 
have 

Ip ( s ) - -  ~RIt(s) = ~(~)~M2C 
and 

.~v 6 M a *a 
fls = sa3.~,ip(~)/~C+.~, ~(~)~M 9 , (13) 

b u 

the two sums in the denominater being taken over the 
broadened ( ~ )  and unbroadened (~') reflexions res- 

b u 

pectively. Table 2 gives the calculated boradenings as 
a function of o`, M and A. Numerical values for a M  = 
10 and 100 are also given. I t  is clear from these results 
that  the breadths of the 200 and 310 reflexions can 
be much greater than those of the other refIexions 
when stacking-fault broadening is important.  

(5) Growth faults 
For growth faults, if 0 < o  ̀ < (2]/3-3),  

1 (-- 1)n'-l(1 --20¢) (n'-l)/2 
A,, = ~ 3 sin 0 

× [sin n'0-2(1-2o`)½ sin ( n ' - l ) 0 ]  , 

B.. = Cn,--- ½(I -An, ) ,  

tan 0 = -- V(3-6o`-o`2) 
( 1 - o , )  " 

(14) 

I t  follows that ,  for H = 3N± 1, 

( M--1 
I(~) = ]cp] 2 I M + ~  ( M - n ' ) ( 1 - 2 o ` )  "'/2 

x cos 2Ten' + - - - - 2 - -  

o  ̀ (~ ( K + I )  
- V(a_6o`_o`e) sin 2~n' + - - - 2 - -  

+ V(3_6o`_o`e) sin 2zn '  + 
(K+I) 0)] t 

(15), 
For (2]/3-3) < o  ̀< 1 similar expressions can be 
obtained, using the methods developed by Paterson 
(1952) and in this paper. However, it is not clear 
whether a high density of faults is ever likely to occur 
in practice; when o  ̀= 1 in the f.-c.c, structure the 
h.c.p, structure results; in the b.-c.c, case however, 
an orthorhombic structure wou]d be produced, in 
which certain atoms are closer than in the original 
b.-c.c, structure. Such a structure seems improbable; 
further, since such short interatomic distances are 
produced at every fault (see Fig. 1), a high density 
of faults is unlikely. Similar considerations apply in 
the case of deformation faults. 

For H - 3N, 

I(¢) = [cpI21M+~Y,(M-n' )cos2~n ' ¢+ , (16) 
( 1  

which is of course identical with the corresponding 
expression worked out for deformation faults. 

Maxima of the broadened reflexions occur at 

= 6 N - 3 ( K +  1)+30[~; 

the reflexions are displaced by 

(17), 
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Table 3. Average integral breadths of powder lines from crystals containing growth faults 
Numerical estimates of fls for 

^ 

hkl fl.s. a M  = 10 a M  = 100 a M  >) 1 

[ 5  (3)~l/6 ,, 7 - i a  a a (3)~16 1 
l l0  ~2] /2+ :~ -~azvz] ~ 0"427~ 0-0552~ V 6 M A  

200 1-2 a 1.2 a 
A A 

9 211 

[ 5  l/2 ( 3 ) ~ / 6  . ] - l a  0"427A 220 if, + :_, y~ ~ ]  

310 0.827 -a 0.827 a 
A A 

A 
222 

1.2~ 1.2 °' 
A A 

0.101 A ~ )  ]/6 M A  

0.0552 A (3)~ 16 1 
f6  M A  

0~ 0C 
0.827 -- 0.827 -- 

A A 

o.~o8~ (~)~ 32 
~/6 M A  

30) ]/'3 a2 for small a. d~= ~ 1+~- - ± ~  

For small a these displacements are negligible and 
cannot be observed; in this respect the effect of growth 
faults differs from that  due to deformation faults. 
The total intensity on the $ scale is again 6MC. For 
H = 3N~: 1 (.~ :~ 0), 

[ r ] 
I~,(~) = M + ~ - ~ { r M - r M + M - 1 }  C, 

where r = (1-2,~)½. For small a, Ip(~) = (M/a)C and 
fl: = 6~. Also fl~/d~ = 4V3~/c~ , so that  for small ~, d~ 
is always negligible compared with fie. Therefore, 
making the same assumptions as in the case of de- 
formation faults, the average broadening fl~ on the 
.s scale is obtained from expression (13), where Ip(~')= 
(M/~)C. Table 3 gives the results for growth faults. 
Again, the 200 and 310 reflexions should be excep- 
tionally broad. 

Discussion 
The calculations show that  the effect of stacking faults 
on the diffraction patterns from b.-c.c, crystals is 
similar to that  in f.-c.c, crystals. In principle, oscilla- 
tion techniques might be used to test for the presence 
of stacking faults, but the large multiplicity of 112 
planes in the b..c.c, case, i.e. 12, as compared with 4 
in the f.-c.c, case might result in the masking of the 
effect on the X-ray photographs. I t  appears from the 
calculations that  a study of the line broadening or of 
line shapes might be fruitful. 

The diffraction lines from martensite are k n o ~  to 
be very broad. Both Smith (1953), who examined low 
carbon (0"10-0.35%C) steels, and Wheeler & Jaswon 
(1947), who examined 1"35%C steels, noted that  the 
200 line is considerably broader than the neighbouring 
• diffraction lines. In the former case, this exceptional 

broadening may be due to a slight tetragonality of 
the steels, which would lead to a relatively greater 
broadening of the 200 lines. A tetragonality corres- 
ponding to about 0.25%C has been measured bv the 
use of special techniques (Roberts, Averbach & Cohen, 
1953). This explanation cannot, however, account for 
a similar anomaly in the Wheeler & Jaswon experi- 
ments, in which the 200+020 line could be separated 
from the 002 line. Since a considerable part  of the 
broadening is due to strains (Smith, 1953), it was sug- 
gested that  the anomaly might be due to the relatively 
small value of Young's modulus in the [100] direction 
compared to that  in the I l l0]  or [211] directions. Both 
Wheeler & Jaswon and Smith noted, however, that  
the ratios of the Young's moduli were rather greater 
than necessary to explain the anomaly, if it is assumed 
that  the stresses rather than the strains are indepen- 
dent of crystallographic direction. I t  is possible, how- 
ever, that  the anomaly may be due to stacking faults, 
and it is interesting to re-interpret the results on this 
basis. Fig. 2 shows Smith's values of fl cos 0 plotted as 
a function of sin 0. The points for the 110, 211 and 
220 reflexions lie close to a straight line through the 
origin, from the slope of which the average root-mean- 
square strain (¼fl cot 0) is found to be 0-0058; the 
height of the point from the 200 reflexion above the 
line corresponds to a deformation stacking fault 
probability ~ = 0"009, i.e. one fault every 130 A 
(~ ll0 (011) planes). This estimate is based on the 
assumption that  faults occur only on one set of (112) 
planes in the crystal; it is possible that  faults occur 
simultaneously on several sets of planes. Supposing 
that faults occur on three sets of planes the average 
distance between faults is 390 A; this may be taken 
as the average distance (2R) between partial disloca- 
tions. Assuming that  the root-mean-square strain of 
this set of dislocations is ~ (b)/R, where (b) is the 
average Burgers vector of the partial dislocations at 
the ends of the stacking faults and equal to 3.A/2[/3, 
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its value is found to be about 0.0069, which is of the 
same order as the root-mean-square strain determined 
from the slope of the straight line. Similar agreement 
was obtained by Warren & Warekois (1955) in their 
analysis of cold-worked ~-brass. 

/ 
® 

2O 

/ , , 2oo 
0 0"2 0"4 0"6 0"8 I "0 

sin 0 

Fig. "2. Variation of /~ cos 0 with gin 0 for a low-carbon 
martensite (Smith, 1953). 

_c 
40 

With regard to the possibility of the production of 
faults by deformation, the results of Smallman (1953) 
on the line broadening from iron filings are of interest. 
Once again, the 200 reflexion is exceptionally broad, 
and, if this discrepancy is explained in terms of stack- 
ing faults as above, a is found to be 0.002, i.e. one 
fault every 585 A. The root-mean-square strain would 
be ---0-0015 compared to the values 0-0032 and 
0.0041 determined experimentally by Smallman for 
two types of iron filed at room temperature. Using 
Me K a  radiation, several high-order lines could be 
studied, and the results show that  the 200, 310 and 400 
lines are exceptionally broad. These observations 
could be explained on the assumption of stacking 
faults (see Table 2), but also in terms of the anisotropy 
of the elastic constants. 

This discussion should be regarded as purely specu- 
lative in view of the lack of more precise experimental 
data, and in view of the fact that  the anomalies can 
be explained in other ways. The results obtained, 
however, suggest that  evidence for stacking faulting 
might be obtained from more extensive measurements 
of line shapes. 
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